Delayed uncoupled continuous-time random walks do not provide a model for the telegraph equation.

نویسندگان

  • S A Rukolaine
  • A M Samsonov
چکیده

It has been alleged in several papers that the so-called delayed continuous-time random walks (DCTRWs) provide a model for the one-dimensional telegraph equation at microscopic level. This conclusion, being widespread now, is strange, since the telegraph equation describes phenomena with finite propagation speed, while the velocity of the motion of particles in the DCTRWs is infinite. In this paper we investigate the accuracy of the approximations to the DCTRWs provided by the telegraph equation. We show that the diffusion equation, being the correct limit of the DCTRWs, gives better approximations in L(2) norm to the DCTRWs than the telegraph equation. We conclude, therefore, that first, the DCTRWs do not provide any correct microscopic interpretation of the one-dimensional telegraph equation, and second, the kinetic (exact) model of the telegraph equation is different from the model based on the DCTRWs.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Monte Carlo simulation of uncoupled continuous-time random walks yielding a stochastic solution of the space-time fractional diffusion equation.

We present a numerical method for the Monte Carlo simulation of uncoupled continuous-time random walks with a Lévy alpha -stable distribution of jumps in space and a Mittag-Leffler distribution of waiting times, and apply it to the stochastic solution of the Cauchy problem for a partial differential equation with fractional derivatives both in space and in time. The one-parameter Mittag-Leffler...

متن کامل

Stochastic calculus for uncoupled continuous-time random walks.

The continuous-time random walk (CTRW) is a pure-jump stochastic process with several applications not only in physics but also in insurance, finance, and economics. A definition is given for a class of stochastic integrals driven by a CTRW, which includes the Itō and Stratonovich cases. An uncoupled CTRW with zero-mean jumps is a martingale. It is proved that, as a consequence of the martingal...

متن کامل

Scaled Brownian motion as a mean-field model for continuous-time random walks.

We consider scaled Brownian motion (sBm), a random process described by a diffusion equation with explicitly time-dependent diffusion coefficient D(t)=αD0tα-1 (Batchelor's equation) which, for α<1, is often used for fitting experimental data for subdiffusion of unclear genesis. We show that this process is a close relative of subdiffusive continuous-time random walks and describes the motion of...

متن کامل

From persistent random walks to the telegraph noise

We study a family of memory-based persistent random walks and we prove weak convergences after space-time rescaling. The limit processes are not only Brownian motions with drift. We have obtained a continuous but non-Markov process (Zt) which can be easely expressed in terms of a counting process (Nt). In a particular case the counting process is a Poisson process, and (Zt) permits to represent...

متن کامل

Numerical Solution of Space-time Fractional two-dimensional Telegraph Equation by Shifted Legendre Operational Matrices

Fractional differential equations (FDEs) have attracted in the recent years a considerable interest due to their frequent appearance in various fields and their more accurate models of systems under consideration provided by fractional derivatives. For example, fractional derivatives have been used successfully to model frequency dependent damping behavior of many viscoelastic materials. They a...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Physical review. E, Statistical, nonlinear, and soft matter physics

دوره 85 2 Pt 1  شماره 

صفحات  -

تاریخ انتشار 2012